2017 국제수학올림피아드 1번문제

정수 $a_0>1$에 대하여, 수열 $a_0$, $a_1$, $a_2$, $\ldots$을 다음과 같이 정의한다.

모든 $n\ge0$에 대하여 \[ a_{n+1}=\begin{cases}\sqrt{a_n},&\sqrt{a_n}\text{이 정수인 경우}\\ a_n+3,&\text{그 외의 경우}\end{cases}\]

무한히 많은 $n$의 값에 대하여 $a_n=A$가 되는 수 $A$가 존재하도록 하는 $a_0$의 값을 모두 구하여라.

GD Star Rating
loading...
2017 국제수학올림피아드 1번문제, 5.0 out of 5 based on 1 rating
이 글은 정수 카테고리에 분류되었고 mo님에 의해 작성되었습니다. 고유주소 북마크.