2017 제78회 William Lowell Putnam 수학경시대회 A3

두 실수 $a<b$가 있다. 두 연속함수 $f:[a,b]\to(0,\infty)$가 $\int_a^b f(x)\,dx = \int_a^b g(x)\,dx$이지만, $f \neq g$이라고 한다. 각각의 양의 정수 $n$에 대하여 \[I_n = \int_a^b \frac{(f(x))^{n+1}}{(g(x))^n}\,dx\]이라고 정의하자. 이때 $I_1, I_2, I_3, \dots$는 증가수열이며 $\lim_{n \to \infty} I_n = \infty$임을 보여라.

2017 제36회 전국 대학생 수학경시대회 제1분야 4번문제

실계수 3차 다항식 $f(x)=x^3+ax^2+bx+c$에 대하여 방정식 $f(x)=0$의 세 근을 $\alpha$, $\beta$, $\gamma$라 하자. 세 근 $\alpha$, $\beta$, $\gamma$가 서로 다른 세 실수이기 위한 필요충분조건은 실대칭행렬 \[\begin{pmatrix}3&p_1&p_2\\p_1&p_2&p_3\\p_2&p_3&p_4\end{pmatrix}\]이 양의 정부호(positive definite)임을 보여라. (단, $p_i=\alpha^I+\beta^I+\gamma^I$이다.)